First Direct Evidence of Main Ion Flow Triggering the L-H Transition*

1University of California, Los Angeles, Los Angeles, CA 90095-7099, USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
3University of California San Diego, La Jolla, CA 92093, USA
4University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706, USA
5General Atomics, PO Box 85608, San Diego, California 92186-5608, USA

Simultaneous measurements of main ion flow (via main ion CER), $E \times B$ flow, and turbulence level \tilde{n}/n (via Doppler backscattering) during transitions characterized by extended limit cycle oscillations (LCO [1]), show for the first time that the initial (transient) turbulence collapse [Fig. 1(a)] preceding the L-H transition is caused by turbulence-generated main ion flow and $E \times B$ opposing the equilibrium (L-mode) edge plasma $E \times B$ flow related to the edge ion pressure gradient. The formation dynamics of edge transport barriers is crucial for understanding the physics basis of the empirical L-H transition power threshold scaling, and for confidently extrapolating auxiliary heating requirements to burning plasmas. Figure 1(b) shows that the $v_i \times B/B$ contribution to the $E \times B$ velocity peaks as fluctuations are first suppressed. Fig. 1(c) shows that the $E \times B$ shearing rate $\omega_{E \times B}$ reverses at this time. The correlations between turbulence envelope, main ion flow, and pressure-gradient driven flow, and their detailed spatio-temporal evolution have been measured. The main ion poloidal velocity lags \tilde{n} early in the LCO, consistent with turbulence-driven poloidal ion flow [Fig. 1(d)]. As the LCO evolves, the periodic reduction in edge turbulence and edge transport enables a gradual increase (and periodic modulation) of the edge pressure gradient and ion diamagnetic flow. During the final phase of the LCO the pressure gradient diamagnetic flow) dominates the mean flow $E \times B$ shearing rate, which becomes sufficiently large to sustain fluctuation suppression and secure the LCO-H-mode transition. A two-predator, one-prey model, similar to a previously developed model [2] but retaining opposite polarity of the turbulence-driven and pressure-gradient-driven $E \times B$ flow, captures essential aspects of the transition dynamics, and is consistent with the direction of the (\tilde{n}, E_z) limit cycle observed in DIII-D and recently in JFT-2M. The scaling of the L-LCO transition threshold power and LCO frequency with edge plasma density, collisionality, and q_{95} will be presented.

*This work was supported by the US Department of Energy under DE-FG02-08ER54984, DE-FG03-01ER54615, DE-AC02-9CH11466, DE-FG02-07ER54917, DE-FG02-89ER53296, DE-FG02-08ER54999, and DE-FC02-04ER54698.