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The problem of Tonks-Langmuir-type collisionless discharges [Phys.Rev.34(6), 876 (1929)]

is a very old and basic one but, unfortunately, has hitherto been solved only with various sim-

plifying assumptions facilitating solution for restricted ranges of validity and particular applica-

tions. The mathematical and computational difficulties of the problem at hand are so severe [K.-

U. Riemann, in 62nd Ann. Gaseous Electronics Conf., (2009)] that during last 80 years it was

only treated for the limiting casesε → 0 (which represents the ratio of Debye length over dis-

charge characteristic length) and/or the normalized ion source temperatureτ → 0, but never

solved properly for arbitrary finite values of both quantities. In the present paper we present

a reliable method of solution not subject to any restrictionof this kind, and demonstrate the

results to be applicable in a practically unlimited range ofplasma parameters appropriate for

experimental and fusion-relevant plasmas.

Introduction

A general mathematical formulation of the problem can be expressed as a task to find the un-

known quantityΨ(Φ), which physicaly represents the inverse of the electric field in the plasma

and sheath regions (withΦ the local electrostatic potential). Our strict mathematical formulation

of the problem can be condensed into the general integro-differential equation

ε2n(Φ)
1

Ψ3

dΨ
dΦ

= 1−λ
∫ Φ

0
Ψ(Φ′)K

(

τ(Φ′−Φ)
)

dΦ′ (1)

with K (τ(Φ′−Φ)) a prescribed singular kernel (which depends of the particular ion source ve-

locity distribution taking role in a given physical scenario and is based on trajectory integration

of the Boltzmann kinetic equation),n(Φ) a prescribed function (which physically represents the

electron density distribution),ε andτ properly chosen plasma parameters andλ the eigenvalue

of the problem, which must be determined on the basis of proper boundary conditions.

Model and basic equations

The general formulation of the problem for a plane-parallelsymmetric discharge consists in

simultaneously solving Boltzmann’s kinetic equation for the ion velocity distribution function
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(VDF) fi(x,v),

v
∂ fi
∂x

− e
mi

dΦ
dx

∂ fi
∂v

= Si(x,v) , (2)

and Poisson’s equation,

− d2Φ
dx2 =

e
ε0

(ni −ne) . (3)

The source termSi(x,v) on the right-hand side of Eq. (2) describes microscopic processes as-

sumed for a particular scenario of interest,x is the Cartesian space coordinate,v is the particle

velocity, e is the positive elementary charge,mi is the ion mass,Φ(x) the electrostatic poten-

tial at positionx, ε0 is the “vacuum dielectric constant” andni andne are the ion and electron

densities, respectively.

Φ(x)

x = 0 x = Lx = −L

Φ(x)

(x, v)

Φ(x′)

(x′, v′)

Φw

x

Figure 1: The geometry and coordinate system.

The geometry of the symmetric prob-

lem considered is schematically shown in

Fig. 1. The plates atx± L are assumed

to be perfectly absorbing and electrically

floating. The electrostatic potentialΦ(x)

is assumed to be monotonically decreas-

ing (for x > 0) and is defined to be zero

at x = 0. The ion source termSi(x,v), de-

scribing the ion generation due to electron-

neutral impact, is assumed to be of the form

Si(v,x) = Rnnne(x) fn

(

v
vTi

)

, (4)

whereR is the (constant) ionization rate,nn is the (uniform) number density of neutrals and the

fn(v/vTi) is the neutral-particle VDF (which is quite general at this point). The electrons follow

the Boltzmann distribution, i.e., the electron number density ne(x) = n0exp
(

eΦ(x)
kTe

)

, with n0 the

electron density atx = 0. In the present work we focus on the case of Maxwellian ion source

velocity distribution, i.e.,fn is a Maxwellian. We introduce the dimensionless quantities

u =
v√
2cs

,
eΦ(x)

kTe
→ Φ(x) ,

x
L
→ x , n =

ni

n0
, j =

Ji

n0cs
, τ =

Te

Ti
=

1
Tn

, cs =

√

kTe

mi
, (5)

in which Poisson’s equation (3) becomes

B
∫ 1

0
dx′exp

[

Φ(x′)−Φ(x)
]

exp
[τ

2
{Φ(x′)−Φ(x)}

]

K0

{τ
2
|Φ(x′)−Φ(x)|

}

= 1− ε2exp(−Φ)
d2Φ
dx2

, (6)
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whereε = λD/L is an arbitrary parameter andλD =
√

ε0kTe/e2n0 is the electron Debye length

at the centre. Equation (6) describes the potential profile for arbitrary source temperature. For

the floating potential of the wall we obtain the relation

exp(Φw) = 2π
√

me

mi

√

Ti

Te
B

∫ 1

0
dx′exp[Φ(x′)] . (7)

Results
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Figure 2: Potential profiles for variousε andTn.

It is a relatively simple task to formulate

the problem but a rather demanding one

to perform numerical calculations. This is

due to many reasons ranging, e.g., from nu-

merical reliability and stability to the CPU

cost per simulation case. It thus seems to

be a logical path to be pursued here is

to continue on our previous works [3, 4]

and to extend previously well established

results to the extent possible via employ-

ing Maxwellian ion-source velocity distri-

bution of arbitraryTn and without any limit

of the system length, i.e., without any re-

striction ofε.

The following results were obtained with

the unified program code that still main-

tains both (ε = 0 andε > 0) models. The

computational grid and almost the entire

code remain the same, although the numer-

ical models are different. Our results for the

potential profiles withL = 1 are shown in

Fig. 2. High resolution of the grid when

approachingx = 1 enabled calculations for

smallε(≤ 0.0006).

For calculating the second derivative we

implemented piecewise Lagrangian poly-

nomial interpolation [5] of order 2 or 3 in

subintervals with smallΦ gradients; 5 point
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Lagrangian interpolation has been used as a basis for derivative. For the last point 4-point sec-

ond derivative of inverse Lagrangian interpolation is used. Although this type of approximation

is often considered to be too expensive for numerical computation, it possesses beautiful sym-

metry and in a modified (weighted) form is comparable in speedto other approximations.

The main difference as compared to theε = 0 case is that now the wall potentialΦw is a free

parameter that can be arbitrary. For gases like hydrogen, used in fusion,Φw can be approximated

by the floating wall condition Eq. (7) forε = 0 case. With the boundary conditionΦ(1) = Φw the

integro-differential equation (6) becomes a relaxation problem in a numerical sense although the

whole system is still floating. For initialization we have implemented the following function that

assures a monotonous initial “shot” to the endpoint:Φ[i] = Φw [1−exp(i/N)]/(1−exp(1)),

disregardingλ1 andλ2. When initial profile has relaxed and converged we employ additional

dual iteration of the potential profile and endpointΦw with a similar smooth stepping technique

to assure correct bounary condition (7) for a given gas.

Conclusion

Our investigation covers a wide range of ion source temperatures and a wide range ofε.

In fact, this is the first investigation of this kind using theanalytic-numerical method. Another

method assume is PIC simulation (see e.g., [6]). The problemof the intermediate region between

sheath and plasma as provided by Riemann’s rules [7] for the finite ion source temperature turns

out to be rather unavailing at least in fusion plasmas.
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