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Introduction

Previously unobserved transport bifurcations in self-consistent simulations have been exam-

ined in drift wave turbulence runs. These distinct transport states, associated with density corru-

gations, are linked with an asymmetry in the turbulence-fedzonal flows - the flows opposite to

the electron diamagnetic drift direction being sharper anddeeper than their counterparts. Both

quantitative and qualitative arguments to explain this phenomenon are presented.

These bifurcations can potentially be of relevance to the problem of internal transport barriers

since the characteristics of these barriers depend on the properties of the drift wave turbulence,

especially in the high gradient tokamak edge. Another application might possibly be geostrophic

modes - the analogon to drift waves in planetary turbulence.

Equation system, units and numerical simulations

The Hasegawa-Wakatani equation system utilized describesa turbulent cold-ion sheared-slab

resistive drift-wave system:
dtn = ρ̂2

s ·dt∇2
⊥φ (1)

dt∇2
⊥φ = −∂ 2

‖ (φ −n) (2)

wheredt = ∂t +(~z×∇⊥φ ·∇⊥), ∂‖ = ∂z−2πx∂y and∇2
⊥ = ∂ 2/∂x2+∂ 2/∂y2 while Lz(=

2πqR) serves as the parallel length scale.

The only relevant (dimensionless) parameter in the Hasegawa-Wakatani equations is the ratio

ρ̂s= ρs/L⊥ (3)

of the ’ion sound Larmor radius’ (for cold ions)

ρs= mvth/eB= m
√

Te/eBmi (4)

to the orthogonal length scale (the scale of maximal drift wave growth where relaxation fre-

quency and diamagnetic drift frequency are equal)

L⊥ = (
πqR

s
)2/3(

n0η‖Te

2e
√

miLn
)1/3 me

miB
(5)

with η‖ as the parallel resistivity andLn =−n(dx/dn).

Time is normalized tot0 = L⊥/vdia,e− wherevdia,e− = Te
eBLn

.
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These equations have been implemented in the two-fluid Braginskii code NLET.

Typical run parameters - using the previously defined units -arenx = ny = 512, nz = 32,

Lx = Ly = 29.3L⊥, Lz = 6.3qR, grid step size≈ 7.7 ·10−3, time step≈ 9.5 ·10−5 and run time

≈ 2.5·101. Extensive convergence as well as consistency scans have been performed as well as

detailed parameter scans forρ̂s and its constitutive parameters.

Growth rate and dominant scales

Due to a lack of a feasible decomposition for the sheared, non-orthogonal, nearly collinear

eigensystem, it is impossible to develop single eigenvectors on their own. Since there is thus

no easy way to reproduce the development of the states via thesheared eigensystem, the linear

properties of the flow states can best be characterised by theeigenvalue of the unsheared system.

In the spirit of this idea and due the absence of growing eigenmodes for alls 6= 0, the general

growth rate for modes in the shearless, non-adiabatic case,as derived from eqns. (1) & (2), is

used:

γ = ℑ(ω)≈
k2
‖

k2
⊥

(1+ ρ̂2
sk2

⊥)[
(1+ ρ̂2

sk2
⊥)

2(
k2
‖

kyk2
⊥
)

]2

+1

for 4k3
⊥ ≪ k2

‖ (k⊥ρ̂s. 1) (6)

which can be approximated by

γ = ω ∗2/ω‖ = k2
⊥/

(
k2
‖/(k

2
⊥)

)
= k4

⊥/k2
‖

The growth rate is used to determine the mixing length anomalous heat diffusion coefficient

D = γ/~k2
⊥. The orthogonal wavenumber upon which the coefficient depends is determined by

one of two scales between which there is a transition - coinciding with the zonal flow onset - at

approx.ρ̂s≈ 0.12−0.20:

• relaxation scaleL⊥ dominant forρ̂s< 0.12: D̂ = γ̂/k̂2
⊥|k⊥=L−1

⊥
= γ̂/k̂2

⊥|k⊥=1∝ ρ̂0
s

• diam. drift scaleρs dominant forρ̂s > 0.2: Dρ = γρ/k2
ρ⊥|k⊥=ρ−1

s
= γρ/k2

ρ⊥|kunits=ρ̂−1
s

∝

ρ̂−2
s (each in units ofL⊥)

⇒ Dρ

D̂
= ρ̂−2

s (analytically) as compared to
Dρ

D̂
= ρ̂−2±0.1

s (numerically)

D/Dρ is asymptotically constant for smallρ̂s and, vice versa,D/D̂ for largeρ̂s.

Transport bifurcations

Our findings mark the first observation of transport bifurcations with two stable gradients

in self-consistent drift wave turbulence simulations. These transport bifurcations are associated

with density corrugations representing stationary transport states with high diffusivity and low

gradients at the flows in electron diamagnetic drift direction and lowered diffusivity and higher

gradients for the opposite flows.
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Figure 1:Flow and density profiles

The flows exhibits a profound asymmetry (in-

creasing for higher values of̂ρs) which accompa-

nies the bifurcation, where the ones opposite to

the electron diamagnetic drift direction are more

sharply concentrated and more tightened radially.

This asymmetric flow pattern emerges on time

scales of order∼ O(101) (taking approx. one or-

der of magnitude longer for every doubling of

ρ̂s) for a typical parameter̂ρs ≈ 0.28. This long

timescale, in combination with the high resolu-

tion, might indicate why these transport bifurca-

tions seem to not have been observed in earlier

studies[1].

Bifurcation mechanism

Evaluating the drift wave action invariantN [2],

∂tN~k =−∇~x

(
N~k ·~vgr,~k

)
−∇~k

(
N~k(x) ·~̇k(~x,~k)

)
(7)

positive flows - the ones in electron diamagnetic drift direction - are found to attract the turbu-

lence while negative ones exhibit repulsive behavior. Thiscan be understood more readily by

inserting the shear-flow-dependent radial wavenumber

kx = kx0 −
∂vy

∂x
t|ky| into vgr,x,cold =

∂ω
∂kx

=
−2kxkyρ̂2

s[
1+ ρ̂2

s (k2
x +k2

y)
]2 (8)

=⇒ vgr,x ≈−2kx0kyρ̂2
s +2v′ytk

2
yρ̂2

s for (k2
x +k2

y)ρ̂2
s ≪ 1 (9)

The flows’ shear changes the radial wavenumber of the propagating drift waves, acting like

a forcefield. Flow shear as well as (due tovgr,x ∝ +v′y) the group velocity turn from positive to

negative at the positive flows, leading to attraction and oscillation around those. Vice versa, the

negative flows repulse the turbulence, making it impossiblefor modes with insufficientkx0 to

penetrate them.

The drift waves originating at the negative flows are driven through an area of high flow

shear equivalent to strongly increasing|kx| and - due to the now non-negligible denominator -

massively decreasing (or even halting) radial group velocity.
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This qualitative picture, supported by numerical studies,can help explain the simultane-

ous deepening of the negative flows and broadening of the positive flows through carry-off

of positive-ky drift waves from the negative flows - even in the absence of density corrugations.

The same repulsion mechanism which is responsible for the flow asymmetry causes the den-

sity corrugations as well: Transport levels, in accordancewith the repulsed turbulence, are re-

duced at the negative flows. But due to the perpetuation of thetransport balance∂xΓ(x) = 0 in

the steady-state equilibrium, higher gradients at the negative flows are required to counterbal-

ance the reduced turbulence levels - which leads to the observed density corrugations.

Further studies

For analytical studies of the mechanism, an elementary nonlinear (to achieve a steady state)

equation system with three balances from basic conservation principles has been proposed:

µ[N] = vy+const. (negative flows correlate with higher drift wave intensity)(10)

Γ[N] = const. (transport balance in equilibrium) (11)

Ṅ = γ[vy,n
′] (change in drift wave intensity acc. to the local growth rate) (12)

Implementation of the resulting coupled equation system for drift wave intensity and flow

strength yields asymmetric flows, in good agreement with thelarge-scale numerical simulations.

Another promising ansatz relies on the introduction of a nonlinear chemical potentialµ[N]

(with µ ∝ N+N2 for large N and µ → −∞ for N → 0) and its three intersections with the

drift wave momentum balancev= N+const., yielding an unstablev0-state as well as the two

(stable) developed flow states. These have|v+| 6= |v−| because of to the intrinsic asymmetry in

µ[N], causing an asymmetry of the radial flow length scale due to total flow conservation.

Summary

Robust transport bifurcations in self-consistent drift wave turbulence simulations have been

identified and examined in detail, including various parameter scans and an analysis of the

dominant scales. The main features, the associated densitycorrugations and the flow asymmetry,

have been explained qualitatively by transport and flow shear arguments, respectively. Further

analytical mechanisms utilizing balances derived from basic conservation principles and the

chemical potential serve to affirm the previous results.
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